Закон архимеда условие плавания тел. Урок по физике "условия плавания тел". Условие плавания тел

На тело, погруженное в жидкость, кроме силы тяжести, действует выталкивающая сила - сила Архимеда. Жидкость давит на все грани тела, но давление это неодинаков. Ведь нижняя грань тела погружена в жидкость больше, чем верхняя, а давление с глубиной возрастает. То есть сила, действующая на нижнюю грань тела, будет больше, чем сила, действующая на верхнюю грань. Поэтому возникает сила, которая пытается вытолкнуть тело из жидкости.

Значение архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.

Закон Архимеда : на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела. Для того чтобы рассчитать силу Архимеда, необходимо перемножить плотность жидкости, объем части тела, погруженное в жидкость, и постоянную величину g.

На тело, которое находится внутри жидкости, действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Существует три условия плавания тел:

Если сила тяжести больше архимедовой силы, тело будет тонуть, опускаться на дно.

Если сила тяжести равна силе Архимеда, то тело может находиться в равновесии в любой точке жидкости, тело плавает внутри жидкости.

Если сила тяжести меньше архимедовой силы, тело будет всплывать, подниматься вверх.

Плавание тел на поверхности жидкости

В надводном положении на плавающее тело по оси OZ действуют две силы (рис.1.1).Это сила тяжести тела G и выталкивающая архимедова сила P z .

плавании, т.е. в погруженном состоянии . К основным понятиям теории плавания относятся следующие:

- плоскость плавания (I-I) - пересекающая тело плоскость свободной поверхности жидкости;

- ватерлиния – линия пересечения поверхности тела и плоскости плавания;

- осадка (y) – глубина погружения низшей точки тела. Наибольшая допустимая осадка судна отмечается на нём красной ватерлинией;

- водоизмещение – вес воды, вытесненный судном. Водоизмещение судна при полной нагрузке является его основной технической характеристикой;

Центр водоизмещения (точ. D, рис. 1.1) – центр тяжести водоизмещения, через который проходит линия действия выталкивающей архимедовой силы;

Ось плавания (О О ") – линия проходящая через центр тяжести С и центр водоизмещения D при равновесии тела.

Для сохранения равновесия ось плавления должна быть вертикальна. Если на плавающее судно в поперечном направлении действует внешняя сила, например сила давления ветра, то судно накренится, ось плавания повернётся относительно точки С и возникнет крутящий момент М к, вращающий судно относительно продольной оси против часовой стрелки (рис.1.2)

Остойчивость плавающего тела зависит от взаимного положения точек С и D. Если центр тяжести С находится ниже центра водоизмещения D, то при надводном плавании тело всегда остойчиво, так как возникающий при крене крутящий момент М к всегда направлен в сторону противоположную крену.

Если точка С находится выше точки D (рис.1.3), то плавающее тело может быть остойчивым и неостойчивым. Рассмотрим эти случаи подробнее.

При крене центр водоизмещения D смещается по горизонтали в сторону крена, так как один борт судна вытесняет больший объём воды, чем другой.

Тогда линия действия выталкивающей архимедовой силы P z пройдёт через новый центр водоизмещения D" и пересечётся с осью плавания ОО" в точке M, называемой метацентром. Для формулирования условия остойчивости обозначаем отрезок

M D 1 = b ,аСD 1 =∆ , где b - метацентрический радиус ; ∆- эксцентриситет .

Условие остойчивости: тело остойчиво, если его метацентрический радиус больше эксцентриситета, т.е. b > ∆.

Графическая интерпретация условия остойчивости представлена на рис. 1.3, из которого видно, что в случае а) b > ∆ и возникший крутящий момент направлен в сторону противоположную крену, а в случае б) имеем: b < ∆ и момент М к вращает тело в сторону крена, т.е. тело не остойчиво.

Водоизмещение корабля (судна) - количество воды, вытесненной подводной частью корпуса корабля (судна). Вес этого количества жидкости равен весу всего корабля, независимо от его размера, материала и формы.

Различают объёмное и массовое стандартное , нормальное , полное , наибольшее , порожнее водоизмещение.

Объёмное водоизмещение Ватерли́ния (нидерл. waterlinie ) - линия соприкосновения спокойной поверхности воды с корпусом плавающего судна. Также - в теории корабля элемент теоретического чертежа: сечение корпуса горизонтальной плоскостью.

Массовое водоизмещение

Стандартное водоизмещение

Нормальное водоизмещение

Полное водоизмещение

Наибольшее водоизмещение

Водоизмещение порожнем

Подводное водоизмещение

Надводное водоизмещение

Остойчивость плавающих тел

Остойчивостью плавающих тел называется их способность возвращаться в исходное положение после того, как они были выведены из этого положения вследствие воздействия каких-либо внешних сил.

Для придания плавающему телу остойчивости необходимо, чтобы при отклонении его из положения равновесия создавалась пара сил, которая и возвратит тело в первоначальное положение. Такая пара сил может создаваться только силами G и P п. Возможны три различных варианта взаимного расположения этих сил (рис.5.3).

Рис. 5.3. Остойчивость полупогруженных тел при взаимном расположении центра тяжести и центра водоизмещения а и б – остойчивое равновесие

Центр масс расположен ниже центра водоизмещения .При крене центр водоизмещения перемещается как за счет изменения положения тела, так и из-за изменения формы вытесненного объема. При этом возникает пара сил, стремящихся вернуть тело в первоначальное положение. Следовательно, тело имеет положительную остойчивость.

Центр масс совпадает с центром водоизмещения – тело будет иметь также положительную остойчивость вследствие смещения центра водоизмещения за счет изменения формы вытесненного объема.

Центр масс находится выше центра водоизмещения .Здесь имеются два основных варианта (рис. 5.4):

1) точка пересечения подъемной силы с осью плавания M (метацентр) лежит ниже центра масс – равновесие будет неостойчивым (рис. 5.4,а );

2) метацентр лежит выше центра масс – равновесие будет остойчивым (рис. 5.4,б ). Расстояние от метацентра до центра масс называетсяметацентрической высотой . Метацентр – точка пересечения подъемной силы с осью плавания. Если точка М лежит выше точки С , то метацентрическая высота считается положительной, если лежит ниже точки С – то она считается отрицательной.

Таким образом, можно сделать следующие выводы:

остойчивость тела в полупогруженном состоянии зависит от относительного расположения точек М и С (от метацентрической высоты);

тело будет остойчивым, если метацентрическая высота будет положительной, т.е. метацентр расположен выше центра тяжести. Практически все военные плавающие машины строятся с метацентрической высотой 0,3-1,5м.

Рис. 5.4. Остойчивость полупогруженных тел при взаимном расположении центра тяжести и метацентра:

а – неостойчивое равновесие; б – остойчивое равновесие

Водоизмещение корабля (судна) - количество воды, вытесненной подводной частью корпуса корабля (судна). Масса этого количества жидкости равна массе всего корабля, независимо от его размера, материала и формы.

Различают объёмное и массовое водоизмещение. По состоянию нагрузки корабля различают стандартное , нормальное , полное , наибольшее , порожнее водоизмещение.

Для подводных лодок различают подводное водоизмещение и надводное водоизмещение.

Объёмное водоизмещение

водоизмещение, равное объёму подводной части корабля (судна) до ватерлинии.

Массовое водоизмещение

водоизмещение, равное массе корабля (судна).

Стандартное водоизмещение

водоизмещение полностью укомплектованного корабля (судна) с экипажем, но без запасов топлива, смазочных материалов и питьевой воды в цистернах.

Нормальное водоизмещение

водоизмещение, равное стандартному водоизмещению плюс половинный запас топлива, смазочных материалов и питьевой воды в цистернах.

Полное водоизмещение

водоизмещение, равное стандартному водоизмещению плюс полные запасы топлива, смазочных материалов, питьевой воды в цистернах, груза.

Наибольшее водоизмещение

водоизмещение, равное стандартному водоизмещению плюс максимальные запасы топлива, смазочных материалов, питьевой воды в цистернах, грузов.

Водоизмещение порожнем)

водоизмещение порожнего корабля (судна), то есть корабля (судна) без экипажа, топлива, запасов и т. д.

Подводное водоизмещение

водоизмещение подводной лодки (батискафа) и иных подводных судов в подводном положении. Превышает надводное водоизмещение на массу воды, принимаемой при погружении в цистерны главного балласта.

Надводное водоизмещение

водоизмещение подводной лодки (батискафа) и иных подводных судов в положении на поверхности воды до погружения либо после всплытия.

И статики газов.

Энциклопедичный YouTube

  • 1 / 5

    Закон Архимеда формулируется следующим образом : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела . Сила называется силой Архимеда :

    F A = ρ g V , {\displaystyle {F}_{A}=\rho {g}V,}

    где ρ {\displaystyle \rho } - плотность жидкости (газа), g {\displaystyle {g}} - ускорение свободного падения , а V {\displaystyle V} - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

    Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

    Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

    Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

    P B − P A = ρ g h {\displaystyle P_{B}-P_{A}=\rho gh} F B − F A = ρ g h S = ρ g V , {\displaystyle F_{B}-F_{A}=\rho ghS=\rho gV,}

    где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

    В теоретической физике также применяют закон Архимеда в интегральной форме:

    F A = ∬ S p d S {\displaystyle {F}_{A}=\iint \limits _{S}{p{dS}}} ,

    где S {\displaystyle S} - площадь поверхности, p {\displaystyle p} - давление в произвольной точке, интегрирование производится по всей поверхности тела.

    В отсутствие гравитационного поля, то есть в состоянии невесомости , закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции , поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами .

    Обобщения

    Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) - на этом основано центрифугирование . Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

    Вывод закона Архимеда для тела произвольной формы

    Гидростатическое давление жидкости на глубине h {\displaystyle h} есть p = ρ g h {\displaystyle p=\rho gh} . При этом считаем ρ {\displaystyle \rho } жидкости и напряжённость гравитационного поля постоянными величинами, а h {\displaystyle h} - параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат O x y z {\displaystyle Oxyz} , причём выберем направление оси z совпадающим с направлением вектора g → {\displaystyle {\vec {g}}} . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку d S {\displaystyle dS} . На неё будет действовать сила давления жидкости направленная внутрь тела, d F → A = − p d S → {\displaystyle d{\vec {F}}_{A}=-pd{\vec {S}}} . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

    F → A = − ∫ S p d S → = − ∫ S ρ g h d S → = − ρ g ∫ S h d S → = ∗ − ρ g ∫ V g r a d (h) d V = ∗ ∗ − ρ g ∫ V e → z d V = − ρ g e → z ∫ V d V = (ρ g V) (− e → z) {\displaystyle {\vec {F}}_{A}=-\int \limits _{S}{p\,d{\vec {S}}}=-\int \limits _{S}{\rho gh\,d{\vec {S}}}=-\rho g\int \limits _{S}{h\,d{\vec {S}}}=^{*}-\rho g\int \limits _{V}{grad(h)\,dV}=^{**}-\rho g\int \limits _{V}{{\vec {e}}_{z}dV}=-\rho g{\vec {e}}_{z}\int \limits _{V}{dV}=(\rho gV)(-{\vec {e}}_{z})}

    При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса .

    ∗ h (x , y , z) = z ; ∗ ∗ g r a d (h) = ∇ h = e → z {\displaystyle {}^{*}h(x,y,z)=z;\quad ^{**}grad(h)=\nabla h={\vec {e}}_{z}}

    Получаем, что модуль силы Архимеда равен ρ g V {\displaystyle \rho gV} , а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

    Другая формулировка (где ρ t {\displaystyle \rho _{t}} - плотность тела, ρ s {\displaystyle \rho _{s}} - плотность среды, в которую оно погружено).

    Плавание - это способность тела удерживаться на поверхности жидкости или на определённом уровне внутри жидкости.

    Мы знаем, что на любое тело, находящееся в жидкости, действуют две силы, направленные в противоположные стороны: сила тяжести и архимедова сила.

    Сила тяжести равна весу тела и направлена вниз, архимедова же сила зависит от плотности жидкости и направлена вверх. Как физика объясняет плавание тел, и каковы условия плавания тел на поверхности и в толще воды?

    Архимедова сила выражается формулой:

    Fвыт = g*m ж = g* ρ ж * V ж = P ж,

    где m ж – это масса жидкости,

    а P ж – вес вытесненной телом жидкости.

    А так как масса у нас равна: m ж = ρ ж * V ж, то из формулы архимедовой силы мы видим, что она не зависит от плотности погруженного тела, а только от объема и плотности вытесненной телом жидкости.

    Архимедова сила - это векторная величина. Причина существования выталкивающей силы – разница в давлении на верхнюю и нижнюю часть тела.Указанное на рисунке давление P 2 > P 1 из-за большей глубины. Для возникновения силы Архимеда достаточно того, чтобы тело было погружено в жидкость хотя бы частично.

    Так, если тело плывёт по поверхности жидкости, значит выталкивающая сила, действующая на погружённую в жидкость часть этого тела равна силе тяжести всего тела. (Fа = Р)

    Если сила тяжести меньше архимедовой силы (Fа > Р), то тело будет подниматься из жидкости, то есть всплывать.

    В случае же, когда вес тела больше выталкивающей его архимедовой силы (Fа

    Из полученного соотношения можно сделать важные выводы:

    Выталкивающая сила зависит от плотности жидкости. А будет тело тонуть или плавать в жидкости, зависит от плотности тела.

    Тело плавает, будучи полностью погруженным в жидкость, если плотность тела равна плотности жидкости

    Тело плавает, частично выступая над поверхностью жидкости, если плотность тела меньше плотности жидкости

    - если плотность тела больше плотности жидкости, плавание невозможно.

    Лодки рыбаков изготовлены из сухого дерева, плотность которого меньше плотности воды.

    Почему же плавают корабли?

    Корпус корабля, который погружается в воду, делают объемным, а внутри этот корабль имеет большие полости, заполненные воздухом, которые сильно уменьшают общую плотность корабля. Объем вытесняемой кораблем воды, таким образом, сильно увеличивают, увеличивая выталкивающую его силу, а плотность корабля в сумме делают меньше плотности воды, дабы корабль мог плавать на поверхности. Поэтому каждый корабль имеет определенный предел массы грузов, который он может увезти. Это называется водоизмещением судна.

    При приготовлении раствора соли определенной плотности хозяйки погружают в него сырое яйцо: если плотность раствора недостаточна, яйцо тонет, если достаточна — всплывает. Аналогично определяют плотность сахарного сиропа при консервации. из материала данного параграфа вы узнаете, когда тело плавает в жидкости или газе, когда всплывает и когда тонет.

    Обосновываем условия плавания тел

    Вы наверняка можете привести множество примеров плавания тел. Плавают корабли и лодки, деревянные игрушки и воздушные шарики, плавают рыбы, дельфины, другие существа. А от чего зависит способность тела плавать?

    Проведем опыт. Возьмем небольшой сосуд с водой и несколько шариков, изготовленных из разных материалов. Будем поочередно погружать тела в воду, а потом отпускать их без начальной скорости. Далее в зависимости от плотности тела возможны разные варианты (см. таблицу).

    Вариант 1. Погружение. Тело начинает тонуть и в конце концов опускается на дно сосуда. Выясним, почему это происходит. На тело действуют две силы:

    Тело погружается, а это значит, что сила, направленная вниз, больше:

    тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа.

    Вариант 2. Плавание внутри жидкости. Тело не тонет и не всплывает, а остается плавать внутри жидкости.

    Попробуйте доказать, что в данном случае плотность тела равна плотности жидкости:

    тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа.

    Вариант 3. Всплытие. Тело начинает всплывать и в конце концов останавливается на поверхности жидкости, погрузившись в жидкость частично.

    Пока тело всплывает, архимедова сила больше силы тяжести:

    Остановка тела на поверхности жидкости означает, что архимедова сила и сила тяжести уравновешены: ^ тяж = F арх.

    тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше, чем плотность жидкости или газа.

    Наблюдаем плавание тел в живой природе

    Тела обитателей морей и рек содержат в своем составе много воды, поэтому их средняя плотность близка к плотности воды. Чтобы свободно двигаться в жидкости, они должны «управлять» средней плотностью своего тела. Приведем примеры.

    У рыб с плавательным пузырем такое управление происходит за счет изменения объема пузыря (рис. 28.1).

    Моллюск наутилус (рис. 28.2), обитающий в тропических морях, может быстро всплывать и снова опускаться на дно благодаря тому, что может менять объем внутренних полостей в организме (моллюск живет в закрученной спиралью раковине).

    Распространенный в Европе водяной паук (рис. 28.3) несет с собой в глубину воздушную оболочку на брюшке — именно она дает ему запас плавучести и помогает вернуться на поверхность.

    Учимся решать задачи

    Задача. Медный шар массой 445 г имеет внутри полость объемом 450 см 3 . Будет ли этот шар плавать в воде?

    Анализ физической проблемы. Чтобы ответить на вопрос, как поведет себя шар в воде, нужно плотность шара (шара) сравнить с плотностью

    в °ды (воды) .

    Для вычисления плотности шара следует определить его объем и массу. Масса воздуха в шаре незначительна по сравнению с массой меди, поэтому т шара = т меди. Объем шара — это объем медной оболочки У меди и объем полости V - . Объем медной оболочки можно определить, зная

    массу и плотность меди.

    О плотностях меди и воды узнаем из таблиц плотностей (с. 249).

    Задачу целесообразно решать в представленных единицах.

    2. Зная объем и массу шара, определим его плотность:

    Анализ результата: плотность шара меньше плотности воды, поэтому шар будет плавать на поверхности воды.

    Ответ: да, шар будет плавать на поверхности воды.

    Подводим итоги

    Тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа (р т >р ж)· Тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа (т =р ж). Тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше плотности жидкости или газа

    Контрольные вопросы

    1. При каком условии тело будет тонуть в жидкости или газе? Приведите примеры. 2. Какое условие нужно выполнить, чтобы тело плавало внутри жидкости или газа? Приведите примеры. 3. Сформулируйте условие, при котором тело, находящееся в жидкости или газе, всплывает. Приведите примеры. 4. При каком условии тело будет плавать на поверхности жидкости? 5. Для чего и как обитатели морей и рек изменяют свою плотность?

    Упражнение № 28

    1. Будет ли однородный свинцовый брусок плавать в ртути? в воде? в подсолнечном масле?

    2. Расположите шарики, изображенные на рис. 1, в порядке увеличения плотности.

    3. Будет ли брусок массой 120 г и объемом 150 см 3 плавать в воде?

    4. По рис. 2 объясните, как подводная лодка осуществляет погружение и всплытие.

    5. Тело плавает в керосине, полностью в него погрузившись. Определите массу тела, если его объем равен 250 см 3 .

    6. В сосуд налили три жидкости, которые не смешиваются, — ртуть, воду, керосин (рис. 3). Затем в сосуд опустили три шарика: стальной, пенопластовый и дубовый.

    Как расположились слои жидкостей в сосуде? Определите, где какой шарик. Ответы поясните.

    7. Определите объем погруженной в воду части машины-амфибии, если на машину действует архимедова сила 140 кН. Какова масса машины-амфибии?

    8. Составьте задачу, обратную задаче, рассмотренной в § 28, и решите ее.

    9. Установите соответствие между плотностью тела, плавающего в воде, и частью этого тела, находящейся над поверхностью воды.

    А р т = 400 кг/м 3 1 0

    Б р т = 600 кг/м 3 2 °Д

    В р т = 900 кг/м 3 3 0 , 4

    Г р т = 1000 кг/м 3 4 0 , 6

    10. Прибор для измерения плотности жидкостей называется ареометром. Воспользовавшись дополнительными источниками информации, узнайте о строении ареометра и принципе его действия. Напишите инструкцию, как пользоваться ареометром.

    11. Заполните таблицу. Считайте, что в каждом случае тело полностью погружено в жидкость.


    Экспериментальное задание

    «Картезианский водолаз». Сделайте физическую игрушку, идею которой придумал французский ученый Рене Декарт. В пластиковую банку, плотно закрывающуюся крышкой, налейте воду и поместите в нее отверстием вниз небольшую мензурку (или маленький пузырек из-под лекарства), частично заполненную водой (см. рисунок). Воды в мензурке должно быть столько, чтобы мензурка чуть выступала над поверхностью воды в банке. Плотно закройте банку и сожмите ее боковые стенки. Проследите за поведением мензурки. Объясните действие данного устройства.

    ЛАБОРАТОРНАя РАБОТА № 10

    Тема. Определение условий плавания тел.

    Цель: опытным путем определить, при каком условии: тело плавает на поверхности жидкости; тело плавает внутри жидкости; тело тонет в жидкости.

    Оборудование: пробирка (или небольшой пузырек из-под лекарства) с пробкой; нить (или проволока) длиной 20-25 см; емкость с сухим песком; измерительный цилиндр, до половины наполненный водой; весы с разновесами; бумажные салфетки.

    указания к работе

    Подготовка к эксперименту

    1. Прежде чем приступить к выполнению работы, убедитесь, что вы знаете ответы на следующие вопросы.

    1) Какие силы действуют на тело, погруженное в жидкость?

    2) По какой формуле находят силу тяжести?

    3) По какой формуле находят архимедову силу?

    4) По какой формуле находят среднюю плотность тела?

    2. Определите цену деления шкалы измерительного цилиндра.

    3. Закрепите пробирку на нити так, чтобы, держа за нить, можно было погрузить пробирку в измерительный цилиндр, а затем вынуть ее.

    4. Вспомните правила работы с весами и подготовьте весы к работе. Эксперимент

    Строго соблюдайте инструкцию по безопасности (см. форзац). Результаты измерений сразу заносите в таблицу.

    Опыт 1. Определение условия, при котором тело тонет в жидкости.

    1) Измерьте объем воды V 1 в измерительном цилиндре.

    2) Заполните пробирку песком. Закройте пробку.

    3) Опустите пробирку в измерительный цилиндр. В результате пробирка должна оказаться на дне цилиндра.

    4) Измерьте объем V 2 воды и пробирки; определите объем пробирки:

    5) Вытащите пробирку, протрите ее салфеткой.

    6) Положите пробирку на весы и измерьте ее массу с точностью до 0,5 г. Опыт 2. Определение условия, при котором тело плавает внутри жидкости.

    1) Отсыпая песок из пробирки, добейтесь, чтобы пробирка свободно плавала внутри жидкости.

    Опыт 3. Определение условия, при котором тело всплывает и плавает на поверхности жидкости.

    1) Отсыпьте из пробирки еще некоторое количество песка. Убедитесь, что после полного погружения в жидкость пробирка всплывает на поверхность жидкости.

    2) Повторите действия, описанные в пунктах 5-6 опыта 1.

    Обработка результатов эксперимента

    1. Для каждого опыта:

    1) выполните схематический рисунок, на котором изобразите силы, действующие на пробирку;

    2) вычислите среднюю плотность пробирки с песком.

    2. Занесите в таблицу результаты вычислений; завершите ее заполнение.

    Анализ эксперимента и его результатов

    Проанализировав результаты, сделайте вывод, в котором укажите, при каком условии: 1) тело тонет в жидкости; 2) тело плавает внутри жидкости; 3) тело плавает на поверхности жидкости.

    Творческое задание

    Предложите два способа определения средней плотности яйца. Запишите план проведения каждого опыта.

    Это материал учебника

    Мы знаем, что на любое тело, находящееся в жидкости, действуют две силы, направленные в противоположные стороны: сила тяжести и архимедова сила. Сила тяжести равна весу тела и направлена вниз, архимедова же сила зависит от плотности жидкости и направлена вверх. Как физика объясняет плавание тел , и каковы условия плавания тел на поверхности и в толще воды?

    Условие плавания тел

    Согласно закону Архимеда условие плавания тел следующее: если сила тяжести равна архимедовой силе, то тело может находиться в равновесии в любом месте жидкости, то есть плавать в ее толще. Если сила тяжести меньше архимедовой силы, то тело будет подниматься из жидкости, то есть всплывать. В случае же, когда вес тела больше выталкивающей его архимедовой силы, то тело будет опускаться на дно, то есть тонуть. Выталкивающая сила зависит от плотности жидкости. А вот будет тело плавать или тонуть зависит от плотности тела , так как его плотность увеличит его вес. Если плотность тела будет выше плотности воды, то тело утонет. Как же быть в таком случае?

    Плотность сухого дерева за счет полостей, наполненных воздухом, меньше плотности воды и дерево может плавать на поверхности. А вот железо и многие другие вещества значительно плотнее воды. Как же возможно строить корабли из металла и перевозить различные грузы по воде в таком случае? А для этого человек придумал небольшую хитрость. Корпус корабля, который погружается в воду, делают объемным, а внутри этот корабль имеет большие полости, заполненные воздухом, которые сильно уменьшают общую плотность корабля. Объем вытесняемой кораблем воды, таким образом, сильно увеличивают, увеличивая выталкивающую его силу, а плотность корабля в сумме делают меньше плотности воды, дабы корабль мог плавать на поверхности. Поэтому каждый корабль имеет определенный предел массы грузов, который он может увезти. Это называется водоизмещением судна.

    Различают порожнее водоизмещение - это масса самого судна, и полное водоизмещение - это порожнее водоизмещение плюс общая масса экипажа, всей оснастки, запасов, топлива и грузов, которую может нормально увезти данное судно без риска утонуть при относительно спокойной погоде.

    Плотность тела у организмов, населяющих водную среду, близка к плотности воды. Благодаря этому они могут находиться в толще воды и плавать благодаря подаренным им природой приспособлениям - ластам, плавникам и пр. В передвижении рыб большую роль играет специальный орган - плавательный пузырь. Рыба может менять объем этого пузыря и количество воздуха в нем, благодаря чему ее суммарная плотность может меняться, и рыба может плавать на различной глубине, не испытывая неудобств.

    Плотность человеческого тела немного больше плотности воды. Однако, человек, когда у него в легких содержится некоторое количество воздуха, тоже может спокойно держаться на поверхности воды. Если же ради эксперимента, находясь в воде, вы выдохните весь воздух из легких, вы медленно начнете опускаться на дно. Поэтому всегда помните, что плавать не страшно, опасно наглотаться воды и впустить ее в легкие, что и является наиболее частой причиной трагедий на воде.